Mass Production of Targets for Inertial Fusion Energy

D.T. Goodin,¹ R.C. Cook,² N.B. Alexander,¹ K.J. Boehm,³ L.C. Carlson,³ D.G. Czechowicz,¹ G.W. Flint,¹ D.A. Geller,⁴ J.K. Hoffer,⁴ J.F. Hund,¹ A. Nikroo,¹ R.R. Paguio,¹ R.W. Petzoldt,¹ D.G. Schroen,¹ J.D. Sheliak,¹ M.S. Tillack³

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA
²Lawrence Livermore National Laboratory Livermore, California, USA
³University of California San Diego, La Jolla, California, USA
⁴Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Third Moscow Workshop on Targets and Applications Moscow, Russia October 15-19, 2007

Acknowledgements

Funding via Naval Research Laboratory (NRL) - High Average Power Laser (HAPL) program

NRL - John Sethian, Bertie Robson, Steve Obenschain, Andy Schmidt, Denis Columbant

Schafer - Don Bittner, John Kames, Nicole Petta, Jon Streit

UCSD - Kurt Boehm, Landon Carlson, Lane Carlson, Tom Lawrence, Jon Spalding, Jeremy Stromsoe, Mark Tillack, Rene Raffray

University of Rochester - *David Harding, Tom Jones*

UCLA - Robin Garrell

Lawrence Livermore - John Perkins

General Atomics - Dan Goodin, Neil Alexander, Amy Bozek, Graham Flint, Dan Frey, Remy Gallix, Jared Hund, Abbas Nikroo, Reny Paguio, Ron Petzoldt, Diana Schroen, Sheida Saeidi, Emanuil Valmianski

Los Alamos - Jim Hoffer, Drew Geller, John Sheliak

Top-level objective = show feasibility of economical target fabrication for commercial fusion

Our objective is to develop the "target factory" for HAPL

IFE ignition targets have been defined

- Potential manufacturing processes that are adaptable to mass-production identified
- An experimental demonstration program for each process step laid out and initiated
- A "baseline" target design identified and good progress made on its fabrication

Basic process steps

- 1. Fab foam capsule
- 2. Overcoat foam
- 3. Fill/layer fusion fuel
- 4. Inject
- 5. Track and engage

Fusion Test Facility (FTF) proposed next step

Foam target progress assisted by ICF-IFE synergism

"Beyond the basics" on foam capsules

IFE-sized (~4 mm OD) divinybenzene (DVB) foam capsules

FTF-sized (~2.4 mm OD) DVB foam capsules

- Optimization of rotobeaker "curing" to improve Non-Concentricity (NC)
- Yields of DVB foam capsules at 1 to 3% NC improved dramatically

Foam capsules - characterization in detail

Checklist of foam capsule progress

Attribute	Value	Tolerance	Meet?	Comments
Composition	DVB	(Low O/N)	Yes	DVB is original baseline foam
Diameter	4.6 mm	±0.2	Yes	Controlled by process flows Characterization: optical
Wall thickness	176 µm	±20	Yes	Controlled by process flows
Density	≤100 mg/cc	[25%]	Yes	Calculated, measured optically
Pore size	~1 µm	<3 µm	Yes	Qualitative by SEM - 1 to 3 μm
Out of round	<1 % of radius		Yes	Limited data, but never an issue
Non- concentricity	< 1-3% wall th.		Yes	Basic feasibility demo'd, yields 5 to 60%

So does this mean we're finished? (no...)

Overcoats for the foam capsules are a current focus!

Status - for polyvinyl phenol on DVB foam (original baseline, made by interfacial polycondensation)

Attribute	Value	Toleran ce	Meet?	Comments
Composition	CH +	O/N OK	Yes	Polyvinyl phenol was "baseline", others possible
Thickness	1 μm	±1	No	Originally 1 μm, ~10 microns may be acceptable
Surface finish	<50 nm		No	
Permeability	Holds DT at cryo		No	Low yield of overcoats, shrinkage, implosion, "microcracks" common
Strength	For filling		Not yet shown	

A major difficulty is overcoating (sealing) hi-aspect ratio shell at wet stage

Alternate approaches to the original, baseline method for overcoats have been evaluated

Evaluated two major approaches..

- 1. Two-step process fill DVB pores with PVP then GDP coat
- 2. Switch to smaller-pore foam like resorcinol formaldehyde (RF)

PVP overcoated with GDP

Cross section of coated DVB shell

...the simpler approach turns out to be best

The first gastight HAPL-sized foam capsule - GDP on RF

 Half-life with deuterium testing confirms permeation flow - not "pinholes"

Coated RF foam shells are smoother than overcoated DVB shells

The recent gas tight RF/GDP shell is one of the smoothest so far

Optical Profiler (WYKO) measurements acquired at 20x, with a 300 x 200 um area

A cryogenic fluidized bed has been constructed to demo mass-production layering

- Static controlled
- Scoping tests show good randomization
- Initial cryostat cooldowns to ~ 11K with 0.5 atm He as fluidizer
- Method to "grab" one shell for characterization has been done at cryogenic conditions (movie?)

QuickTime[™] and a H.264 decompressor are needed to see this picture.

Cryocoolers

Cryogenic circulator

[,] Helium Compressors

Shells (empty) at 11 Kelvin

QuickTime[™] and a H.264 decompressor are needed to see this picture.

Target injection now has several acceleration options ...

Previously demonstrated:

-Velocity \geq 400 m/s, time jitter 0.5 ms, 2-piece sabot separation in vacuum -Target placement accuracy of 10 mm at 17 meters standoff (1 σ)

Gas-gun with 2-piece sabot to protect target

Magnetic diversion reduces gas in chamber, reduces heating, and allows slower injection

Range of options, including:

- 1. Gas-gun for >400 m/s
- 2. "EM Slingshot" concept for 50-100 m/s

Improved accuracy demo'd at 50 m/s (without 2-piece sabot) \rightarrow 4 mm at 17 m (1 σ), and done with ~1 mg (P α MS shells) projectiles

Tracking - optical table demo of "hit-on-fly" engagement

- + IFE requirement is alignment of lasers and target to 20 μm
- System using lasers, optics and fast steering mirror
- Also "glint" from target ~1 ms before the shot aligns optical train (target itself is the reference point)

Fast steering mirror for demo (commercial)

- Scaled experiment, velocity ~ 5 m/s
- Accuracy of hitting "onthe-fly" is ~125 microns now (1σ)
- Working toward 20 micron goal for demo

Also evaluating "advanced" techniques for capsule fabrication

Collaboration with UR and UCLA to evaluate new "microfluidic" methods of manipulating capsules

- "Micro-fluidics" can manipulate small quantities -> e.g., "lab on a chip" chemical reactors....
- Dielectrophoresis (DEP) difference in electrical properties of inner/outer droplet to control capsule geometry with DEP

QuickTime™ and a Video decompressor are needed to see this picture.

750 pl droplet formation device, **Robin Garrell, UCLA**

Micro-siphon, 100 micron passages, **Tom Jones, UR**

- A collaboration has been formed between UCLA, Univ. of Rochester, and GA (UC Discovery Grant)
 - → Implement E field manipulation in existing GA droplet generation process for higher yield concentricity

Summary/Conclusions

- 1. Moving "beyond the basics" in demonstrating laser fusion target supply
 - Mass-production identified for each step
 - Demo programs underway with good progress
 - Advanced methods being evaluated
- 2. Basic foam capsules can be made
 - Focus now on yield curves and detailed specifications
- 3. Working to get gastight, smooth overcoats first one made
- 4. Mass production demo for layering now undergoing cold checkouts
- 5. A range of target injection methodologies available
- 6. Tracking and engagement table-top demo is closing in on our goal of 20 micron alignment in a scaled experiment

R.C. Cook

