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Our objective is to develop the “target 
factory” for HAPL
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• “Target factory” involves 
manufacturing, filling, 
injecting, and tracking the 
target

• We are working towards an 
ignition target

~500,000 
targets/day 

for 1000 
MW(e) power 

plant

Dry wall, direct-drive, laser fusion



IFE ignition targets have been defined

• Potential manufacturing processes that are 
adaptable to mass-production identified

• An experimental demonstration program for 
each process step laid out and initiated

• A “baseline” target design identified and 
good progress made on its fabrication ….

DT Vapor

Foam + DT

2.
3 

m
m

CH Overcoat

DT

Cryo at 
17.3K

Diameter = ~4.6 mm
Foam Wall = ~176 μm
Yield = ~350 MJ
Gain = ~150

IFE Reference 
Target

High Z coating Fusion Test Facility (FTF) 
proposed next step

Naval Research Laboratory

1. Fab foam capsule
2. Overcoat foam
3. Fill/layer fusion fuel
4. Inject
5. Track and engage

Basic process steps
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Synergism

Foam target progress assisted by ICF-IFE 
synergism  

Baseline foam material chosen 
for HAPL = divinylbenzene (DVB) Resorcinol formaldehyde 

foam (RF)



“Beyond the basics” on foam capsules

• Optimization of rotobeaker “curing” to 
improve Non-Concentricity (NC)

• Yields of DVB foam capsules at 1 to 3% 
NC improved dramatically
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• Contact radiography for detailed foam 
shell characterization

Foam capsules - characterization in detail
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Checklist of foam capsule progress

Attribute Value Tolerance Meet? Comments

Composition DVB (Low O/N) Yes DVB is original baseline foam

Diameter 4.6 mm ±0.2 Yes Controlled by process flows
Characterization:  optical

Wall 
thickness

176 μm ±20 Yes Controlled by process flows

Density ≤100 
mg/cc

[25%] Yes Calculated, measured optically

Pore size ~1 μm <3 μm Yes Qualitative by SEM - 1 to 3 μm

Out of round <1 % of 
radius

-- Yes Limited data, but never an issue

Non-
concentricity

< 1-3% 
wall th.

-- Yes Basic feasibility demo’d, yields 5 to 
60%

So does this mean we’re finished?  (no…)



Overcoats for the foam capsules are a current focus!

Attribute Value Toleran
ce

Meet? Comments

Composition CH + O/N OK Yes Polyvinyl phenol was “baseline”, 
others possible

Thickness 1 μm ±1 No Originally 1 μm, ~10 microns may 
be acceptable

Surface 
finish

<50 nm -- No

Permeability Holds DT 
at cryo

-- No Low yield of overcoats,shrinkage,  
implosion, “microcracks” common

Strength For filling -- Not yet 
shown

Status - for polyvinyl phenol on DVB foam (original baseline, made by 
interfacial polycondensation)

A major difficulty is overcoating (sealing) hi-aspect ratio shell at 
wet stage



Alternate approaches to the original, baseline method for 
overcoats have been evaluated

Cross section of coated DVB shell

PVP

DVBGDP

5 µm

PVP overcoated with GDP

Evaluated 
two major 
approaches..

1. Two-step process - fill DVB pores with PVP then 
GDP coat

2. Switch to smaller-pore foam like resorcinol 
formaldehyde (RF)

RF foam, with 
<0.1 μm pore 
size, directly 
overcoated 

with GDP

Oxygen content of RF OK’d by 
designers

Successful at Omega size (~1 mm OD)

…the simpler approach turns out to be best
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The first gastight HAPL-sized foam capsule - GDP on RF

• Half-life with deuterium testing confirms permeation 
flow - not “pinholes”

Gas Retention Yield

Current goal of <10 
μm total

“pinhole flow” still likely for DVB

HAPL-sized RF shell with 
direct GDP coating

Significant work 
remains to 

perfect this high 
aspect ratio 

overcoat
HAPL-sized PVP/GDP 

on DVB foam



Coated RF foam shells are smoother than over-
coated DVB shells

Optical Profiler (WYKO) measurements acquired 
at 20x, with a 300 x 200 um area

Surface Roughness of HAPL Coated Foam Shells
(> 4 mm diameter) 

Shell/Coating 
Type:

DVB/PVP DVB/PVP/
GDP

RF/GDP

Gas tight 
shell

The recent gas tight RF/GDP shell is one of the smoothest so far

50 nm specified 
by NRL



A cryogenic fluidized bed has been constructed to demo 
mass-production layering 

Cryogenic
circulator

Cryocoolers

Helium
Compressors

Deuterium 
booster pump

• Static controlled
• Scoping tests show good 

randomization
• Initial cryostat cooldowns to ~ 

11K with 0.5 atm He as fluidizer
• Method to “grab” one shell for 

characterization has been 
done at cryogenic conditions 
(movie?)

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

Shells (empty) at 11 Kelvin



QuickTime™ and a
H.264 decompressor

are needed to see this picture.



Target injection now has several acceleration 
options …

1. Gas-gun for >400 m/s
2. “EM Slingshot” concept for 

50-100 m/s

Previously demonstrated:
-Velocity ≥400 m/s, time jitter 0.5 ms, 2-piece sabot separation in vacuum
-Target placement accuracy of 10 mm at 17 meters standoff (1σ) 

Improved accuracy demo’d at 50 m/s (without 2-piece sabot)
→ 4 mm at 17 m (1σ), and done with ~1 mg (PαMS shells) projectiles

Range of options, including:

Gas-gun with 2-piece 
sabot to protect 

target

Magnetic diversion reduces gas in 
chamber, reduces heating, and 

allows slower injection



Tracking - optical table demo of “hit-on-fly” engagement 

• IFE  requirement is alignment of lasers and target to 20 μm
• System using lasers, optics and fast steering mirror
• Also - “glint” from target ~1 ms before the shot aligns optical 

train (target itself is the reference point)

(target)

• Scaled experiment, 
velocity ~ 5 m/s

• Accuracy of hitting “on-
the-fly” is ~125 microns 
now (1σ)

• Working toward 20 micron 
goal for demo

Fast steering 
mirror for demo 
(commercial)



Also evaluating “advanced” techniques for capsule 
fabrication

• “Micro-fluidics” can manipulate small 
quantities -> e.g., “lab on a chip” chemical 
reactors….

• Dielectrophoresis (DEP) - difference in 
electrical properties of inner/outer droplet 
to control capsule geometry with DEP

Collaboration with UR and UCLA to evaluate new “microfluidic”
methods of manipulating capsules

QuickTime™ and a
Video decompressor

are needed to see this picture.

Micro-siphon, 100 micron 
passages, Tom Jones, UR

750 pl droplet formation 
device, Robin Garrell, UCLA

• A collaboration has been formed between UCLA, 
Univ. of Rochester, and GA (UC Discovery Grant)
→ Implement E field manipulation in existing GA 

droplet generation process for higher yield 
concentricity



Summary/Conclusions
1. Moving “beyond the basics” in demonstrating laser fusion 

target supply
- Mass-production identified for each step
- Demo programs underway with good progress
- Advanced methods being evaluated

2. Basic foam capsules can be made
- Focus now on yield curves and detailed specifications

3. Working to get gastight, smooth overcoats - first one made

4. Mass production demo for layering now undergoing cold 
checkouts

5. A range of target injection methodologies available

6. Tracking and engagement table-top demo is closing in on 
our goal of 20 micron alignment in a scaled experiment



R.C. Cook
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