Overview of the LMJ cryogenic target program

3rd Moscow Workshop on Targets and Applications

October 15 through October 19, 2007

Moscow, Russia
Inertial Fusion Experiments on LMJ: first experiments at the end of 2012

- 1.8 MJ at 0.35 µm
- Pulse duration 0.2 ns to 25 ns at 3 ω.

Nominal ignition target design adapted to 300 eV:
- Indirect drive,
- Solid DT layer inside,
- CHGe plastic shell,
- DT permeation filling.

LMJ building:
300 m in length

Experimental hall:
50 m in diameter

Experimental chamber:
10 m in diameter

Cryogenic Target Assembly (CTA):
10 cm

Hohlraum:
1 cm

Microshell:
2 mm in diameter

Solid DT

CH₄ Microshell

DT gas

CH₄ Microshell

DT gas

Experimental chamber:
10 m in diameter

Cryogenic Target Assembly (CTA):
10 cm

Hohlraum:
1 cm

Microshell:
2 mm in diameter

Solid DT

CH₄ Microshell

DT gas
The « cold chain » for CTA from Dijon to Bordeaux

CEA Valduc (Dijon)

Cryogenic Target Assembly (CTA)
(Room temperature)

Cryogenic Filling Station (IRCC)

CEA CESTA (Bordeaux)

LMJ Chamber with cryogenic target positionner (PCC)

Cryogenic thermal shield extractor

UTCC

SdTP

Cryostat transfer (VTCC + UTCC)

CEA Grenoble (in charge of design of cryogenic systems), see MWTA-D. Chatain
Target Department in Valduc: Research, Development and Manufacture of targets

Main program: cryogenic targets for LMJ

Cryogenic Target Assembly (CTA)

Cryogenic target filling station (IRCC) and transport (VTCC)

Redistribution in hohlraums
Cryogenic Target Assembly (CTA) : permeation is the nominal path

Elements which carry out the CTA design:
- Avoid PCC damaging: 100 mm between hohlraum/base
- Excellent conduction at 20K: ultrapure aluminum turret
- Mechanical resistance
- Target alignment
- Interfaces with cryogenic grippers and thermal shield

Consequences of permeation for CTA (measurements in glovebox), we need
- Tritium compatibility of all the target parts: membranes, thermometers,…
- Amount of tritium trapped in each piece

Microshell: uniform and graded CH$_x$Ge (PAMS/GDP technique)

- The main effort is focused on graded CH$_x$Ge design
 - PAMS mandrel: stringent specifications (sphericity): necessary for the final roughness (polymer see oral presentation MWTA – A. Balland-Longeau)
 - GDP µshell: 21 stringent specifications are required with sufficient yield, major issues are
 - Thickness control of layers
 - Density measurements
 - Ge doping
 - Roughness minimization

Microshell

- RMS (2) < 120 nm
- RMS (2-10) < 150 nm
- RMS (10-1000) < 10 nm

Ge doping

- 0.4 % at. ± 0.1 % (measured ± 0.05)
- 0.75 % at. ± 0.2 % (measured ± 0.1)

Work is in progress to increase the yield of each specification to have an acceptable final yield for delivering

Hohlraum: a difficult challenge to reach all specifications

- Main functions (at cryogenic temperature) are
 - Microshell must be centered less than 10 µm (3 directions) for thermonuclear gain (implosion symmetry) and thermal reasons
 - Contain mixture of He/H₂ to avoid the gold plasma blow-off
 - 2 windows for laser entrance hole (LEH):
 - Add polyimide membrane
- A uniform DT layer has conducted the design which needs
 - A perfect uniform temperature around the microshell (<80 µK):
 - Add microheaters
 - To avoid convection of He/H₂ to be compatible with thermohydraulics, implosion physics and fabrication (450 mbars):
 - Add anti-convective membranes, so add holes to avoid jet during shot

- Substantial steps of fabrication have been reached:
 - Fabrication of 2 aluminum/gold rings (µ-heaters+µ-thermometers)
 - Fabrication of 4 gold rings with µ-heaters
 - Fabrication and mounting of membranes (1 µm polyimide and 100 nm Formvar)
 - Centering of microshell (X,Y ≤ ± 20 µm, en Z ≤ ± 30 µm)
 - High accuracy assembling
 - Successfully tested in cryogenic and vacuum environments

(« Aromatic Polyimides with High Performances and Deuteration », E. Anselmi, American Nuclear Society, 2004, 45, 2, 157-164
CTA assembling and test

- **Main functions** (at cryogenic temperature) are
 - To protect the Cryogenic Target Positioner (CTP) : 100 mm needed between microshell and the base
 - High conductivity without gaps at junctions (base/turret + turret/aluminum ring)
 - Severe dimensional tolerances for turret (± 20 µm)
 - Low gas leak
 - Compatibility with DT

- **Upgraded version of CTA** are routinely fabricated for cryogenic studies
 - Turret : machined in a single piece of ultra pure aluminum (± 20 µm)
 - Junction without thermal resistance by YAG laser welding
 - Vacuum test of CTA on a specific device
 - All CTA parts are tested in a specific DT gloveboxes
 - Filling : 400 bars for 6 hours
 - Quantitative analysis after DT exposure are carried out :
 - Mechanical and permeation properties of membranes at 20K : ok for Formvar and polyimide (250 µm under 0.5 bar and $K \sim 10^{-21}$ mol.(msPa)$^{-1}$)
 - Mechanical properties of µshell : more than 100 bars in decompression
 - Properties of electrical pieces (resistant thread, µ-heaters,...) : ok
 - Amount of T_2 absorbed in CTA = around 100% inside µshell

Ultra pure aluminum conductivity is 3 time higher than sapphire

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
0 & 5000 & 10000 & 15000 & 20000 & 25000 \\
0 & 10 & 20 & 30 & 40 & \\
\end{array}
\]

- **Region of interest for conductivity** [15K-19K]
 - Al 7901 - Goodfellow 99.999%
 - Ultra pure Al, cured 2 h- 400°C (1)
 - Sapphire
 - Ultra pure Al

See figure for DT glovebox for test of CTA parts, CTA, Laser Micro welding, and CTA vacuum test.
Target Department in Valduc: Research, Development and Manufacture of targets

Cryogenic Target Assembly (CTA)

Cryogenic target filling station (IRCC) and transport (VTCC)

Main program: cryogenic targets for LMJ

Redistribution in hohlraums
Nominal filling process of operational cryogenic targets for LMJ: permeation

- Permeation filling at room temperature (max 1300 bars DT pressure)
- Cooling and pumping
- The beginning of cryogenic interfaces from Valduc to CESTA

CRCC: 3D cryogenic system + permeation cell (CP)

Back pressure process

Cooling system for permeation cell and cryo gripper (Stirling device)

Tritium purification and gas storage systems: under manufacture

Moving cryostat (VTCC)

Filling station (IRCC): under manufacturing

CRCC: a challenge among others

- Functions required (T_{room} and 20 K) in a constraint context of tritium nuclear building (limited LHe, small space, norms, earthquake, easy maintainability and good reliability):
 - To move and open/close 6 cell plugs,
 - To move 6 targets (inside, outside),
 - To cool down cryo gripper (18 K in 12h) + 6 permeation cells (CP) (20 K in 18h)

- A first part of the challenge has been already reached
 - Design realized
 - Manufacture is in progress
- Plan to be operational in DT at the end of the decade

- Mechanical performances required to move the cryo gripper / CP and VTCC (T_{room} and 20 K)
 - Accuracy of movement: ±0.02 mm
 - To bring into line cryogenic gripper and CP or VTCC
 - $\alpha < 0.1^\circ$
 - $\Theta < 1^\circ$
 - Positioning sensor ±0.01 mm
 - Gap between inside CP and target: 290 µm
- Solution found: piezo sensors with tactile areas

- Permeation cell (CP)
- Copper cooling stage with 6 permeation cells
- Stirling device + triple cryogenic loops with He under 20 bars
VTCC : a challenge among others

- Functions required in the constraint context of UE road transport safety rules (ADR) :
 - To move 6 cryo targets with thermal shield filled DT/He+H₂ in a LHe tank
 - To move VTCC with self-cooling during 48 h :
 - T < 25K
 - ΔT < 1K in 1h

- Main characteristics of the design :
 - Tank of LHe : 100 l
 - 3 shields : vacuum, 80K shield and 20K shield
 - Temperature regulation by H₂ « bulb » system

- Performance reached :
 - Decrease the temperature target down to 20 K :
 - < 20 hours
 - Around 100 l LHe
 - Regulation of temperature
 - < 0.1K during few hours
 - T < 25K

- We now have a sufficient knowledge on this first prototype :
 - To up grade the design for longer use
 - To add modifications for CRCC compatibility

CEA/VA/DRMN/SMCI /R. COLLIER 3rd MWTA 2007
Target Department in Valduc : Research, Development and Manufacture of targets

Cryogenic Target Assembly (CTA)

Main program : cryogenic targets for LMJ

Cryogenic target filling station (IRCC) and transport (VTCC)

Redistribution in hohlraums
Studies of cryogenic layer (D2 + Infrared)

- Two stringent specifications have to be reached simultaneously:
 - Low roughness of DT solid layer (<1 µm, modes > 2) = LMJ spec.
 - Low density of DT central gas 0.3 mg/cc (1.5K below DT triple point (TP))
- Solution: slow cooling (DOE Labs 2005) at -1K/min. in around 50 hours

- Two original cooling paths were obtained at CEA in 2005 in a shorter time:
 - « Quenching »: fast freezing of the target (few seconds):
 - « Dynamic thermal Q »: by cooling gripper, need to be coupled with laser shot
 - « Static thermal Q »: if you shut down IR laser
 - « Breathing »: a sinusoidal temperature is applied to the target: repair small defect
 - To combine the 2 ways: « Quenching + Breathing »

- We have demonstrated that these techniques are very effective:
 - In having a shorter conformation time (good for autonomy of cryo gripper on LMJ),
 - To have low roughnesses at -1.5K T.P.,
 - To be independant of laser shot time (Static thermal Quenching)
- We still have work to do:
 - To improve the robustness of these techniques
 - To optimize the temperature oscillation and Quenching process
 - To test these technics in hohlraum (proved by simulation for both)

Studies of cryogenic layer: filling and conformation in hohlraum

- The Study Filling Station (SFS) is an experimental set up to demonstrate the conformation of a cryogenic layer (D2 and DT) on CTA scale 1:
 - Filling parameters (see poster MWTA-F. Bachelet)
 - Characterization techniques of cryogenic layer
 - Conformation parameters to reach ice quality required

Two techniques for characterization are installed:
 - Shadowgraphy
 - Optical Coherence Tomography (see poster MWTA-F. Sandras)

From incomplete data, a global rebuilding of the whole 3D solid DT layer shape is obtained
 - Combining the measurements from 2 techniques,
 - Use mathematical algorithm

We have integrated and tested the whole experimental set-up
- We have demonstrated a new characterization technique: OCT
- The 3D rebuilding has been validated
- Work is in progress to close the glovebox for the next step with DT

Summary

• Cryogenic Target assembly
 – Microshell: very low roughnesses has been demonstrated for graded CH$_x$Ge: yield with all specifications is the main objective
 – All key technologies and materials for the cryogenic target assembly have been developed: optimization is a daily chore
 – Compatibility of all pieces with T$_2$ have been demonstrated: still a test in real conditions at scale 1 to do

• Cryogenic target filling station (IRCC) and transport (VTCC)
 – The design of IRCC is now completed and key technology has been successfully prototyped: we are now waiting for the end of manufacturing and testing
 – The first prototype of VTCC has reached its main objectives: next upgrade would be compatible to IRCC

• Redistribution
 – « Thermal Quenching » and « Breathing » techniques have shown first evidence to improve β-layered DT solid layers
 – Two characterization means combined with 3D rebuilding model are now operationnel for ice conformation in hohlraum

We still have a lot of work to do.....