Uniform irradiation of targets on powerful laser facilities

S.G.Garanin, V.N.Derkach

Russian Federal Nuclear Center – VNIIEF, Sarov

Contents

- Concept of laser beam smoothing
- Novel types of lens raster's for beam shaping
- Plasma induced smoothing for speckles suppressing
- Recent experiments results

Beam smoothing principles

Lens array for beam shaping

Energy concentration $\approx 50\%$.

- Variation of focal spot configuration (square to rectangle)
- Choosing the divergence to compensate the diffraction pattern
- Edge softening by serrated apodizer
- Determination of the complex raster configuration with mutual diffraction compensation

Beam quality vs induced divergence

Edge softening

	1 type	2 type	3 type
Square, %	35,91	6,21	57,88
Number of elements	23	4	37
Focus distance, m	41,667	56,306	34,722

=

ВНИИЗСР

Operating with beam quality

2D wave front simulation

Raster topology

The EOS experiments on LUCH

Parameters of experiments

Shock uniformity experiments

Experiment on shock stationarity

D,km/s

PHAN V

Investigation of the EOS of Pb

EOS perspectives on LUCH facility

Plasma induced smoothing

Purpose: reducing of laser induced shock nonuniformities by temporal smoothing of laser spot irregularities . Method concludes in laser coherence reduction when passing through undercritical plasma layer. The dynamical plasma phase plate method is found to have great efficiency:

- Energy transition >80%
- Speckles redistribution 0.4 ps

- Nonuniformity <3%
- Smoothing duration >300 ps

Undercritical foams advantages:

- Smoothing starts with front of pulse;
- Smoothing duration increased to ≈1 ns;
- Efficiency increased of scales smoothing towards several hundreds microns.

Experiments started with foams:

- Density 1-2mg/cm³ & thickness 100-200 μm
- Transition is achieved ≈60% and >80% is forecasted

Dynamic plasma phase plate experiments

Experiments on turbulent mixing

SiO₂ Al Au (Mg) 5-7μm 2μm 0.1-0.4μm

V.N.Derkach