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Beam smoothing principles
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1 - aberrated laser beam
2 - stationary smoothed
3 - temporally smoothed



Lens array for beam shaping
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Lens raster
Objective

Complex focal plane

The objective 
focal plane

Focused beam envelope smoothing produced by geometrical factor: U=Uinitial/N1D
initial beam                     smoothed by raster

The basic features of a standard raster:
Uniform spot size – 2/3 from the geometrically determined
Energy concentration ≈ 50%.

Interference pattern Envelope Envelope + divergence



• Variation of focal spot configuration (square 
to rectangle)

• Choosing the divergence to compensate the 
diffraction pattern

• Edge softening by serrated apodizer
• Determination of the complex raster 

configuration with mutual  diffraction 
compensation

Raster optimization
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Beam quality vs induced divergence



Edge softening
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Raster cell topology
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Multi component lens raster 

1 type 2 type 3 type

Square, % 35,91 6,21 57,88

Number of elements 23 4 37

Focus distance, m 41,667 56,306 34,722



Operating with beam quality
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The EOS experiments on LUCH



Laser parameters:

• Wave length 0,527 μm;
• Energy 150-600J;
• Pulse duration 2 ns;
• Contrast >107;
• Intensity 5⋅1013-2⋅1014 W/cm2

• Beam size on target  600x300 μm2

• Uniform area of beam 400х200 μm2

Laser
radiation

Lens raster   Objective                                Target

Sample step

Base

Standard step

Focal spot
on target

Streak-camera
shock diagnostic

Target parameters:

• Base: plastic (6-8 μm) & Al (50-100 μm);
• Steps materials: Al, Cu, Pb;
• Steps heights: 5-30 μm;
• Steps crown: <0.1-0.2 μm;

Diagnostic performance:

• Optical magnification 5.5;
• Spatial resolution <10 μm;
• Temporal resolution <10 ps;
• Accuracy of the delay determining <10ps

Parameters of experiments



Shock uniformity experiments
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Shock features:
Front duration <100 ps
Shock delay <10 ps
Uniform area 360 μm



Experiment on shock stationarity
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Investigation of the EOS of Pb
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EOS perspectives on LUCH facility

Beam quality should be increased
with undercritical foam smoothing

Pressure should be increased to 100 Mbar 
with targets having the profiled density

Feather steps:
• Intensity smoothing by multi-focus lens raster applying
• Works on target perfection
• Revision of EOS of Cu and standard changing from Al to Cu
• Temporal resolution increasing
• High-Z materials testing
• Introduction of active shock diagnostic

                  Undercritical
       Foam        TargetLaser                 Overcritical

          Foam    Plastic  TargetLaser        



Plasma induced smoothing

Purpose: reducing of laser induced shock nonuniformities by temporal smoothing of laser spot 
irregularities . Method concludes in laser coherence reduction when passing through undercritical
plasma layer. The dynamical plasma phase plate method is found to have great efficiency:
- Energy transition >80% - Nonuniformity <3%
- Speckles redistribution 0.4 ps - Smoothing duration >300 ps

d, mμ

t, ps

Undercritical foams advantages:
Smoothing starts with front of pulse;

• Smoothing duration increased to ≈1 ns;
• Efficiency increased of scales smoothing 
towards several hundreds microns.

Experiments started with foams:
• Density 1-2mg/cm3 & thickness 100-200 μm
• Transition is achieved ≈60% and >80% is 
forecasted

DPPP smoothed beam
Streak-camera image            Cross-section intensity integral

(over the pulse duration)



Dynamic plasma phase plate experiments 

Smoothed probe 
beam

Unsmoothed probe beam

Cross-section of a far-field distributions

Au (0.1 μm)/Al

Nonstationary plasma cloud
(dynamical plasma phase plate)

initiated  by special pulse ahead the probe at 300 ps
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Registration of spectrum: Au continuum and He(α) of Al



Power
beam

SiO2 Al    Au (Mg)
5-7μm   2μm   0.1-0.4μm

Probe
beam

3D foam target for smoothing

Load beam envelope 
with a lens raster

Control
beam

Experiments on turbulent mixing
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