

HiPER:

the science of extreme conditions and the route to IFE in Europe

Prof Mike Dunne

Director, Central Laser Facility, Rutherford Appleton Laboratory, UK

m.dunne@rl.ac.uk

www.clf.rl.ac.uk

www.hiper-laser.org

HiPER Acknowledgements to the HiPER team ...

 $\begin{array}{l} \text{Dunne}\,M_{}^{1};\,\text{Alexander}\,N_{}^{2};\,\text{Amiranoff},F_{}^{3};\,\text{Aguer},P_{}^{4};\,\text{Atzeni},S_{}^{5};\,\text{Azechi},H_{}^{6};\,\text{Bagnoud},V_{}^{7};\\ \text{Balcou,P}_{}^{8};\,\text{Badziak,J_{}^{9}};\,\text{Batani,D_{}^{10}};\,\text{Bellei,C_{}^{5,11}};\,\text{Besnard,D_{}^{12}};\,\text{Bingham,R_{}^{1}};\,\text{Breil,J_{}^{8}};\\ \text{Borghesi,M_{}^{13};\,\text{Borneis,S_{}^{7};\,\text{Caruso,A}_{}^{14};\,\text{Chanteloup,J.C_{}^{3}};\,\text{Clarke,R,J_{}^{1}};\,\text{Collier,J.L_{}^{1}};\\ \text{Davies,J,R_{}^{15};\,\text{Dufour,J-P_{}^{16};\,\text{Estraillier,P_{}^{12};\,\text{Evans,R,G_{}^{1,11};\,\text{Fajardo,M_{}^{15};\,\text{Fedosejevs,R_{}^{17}};\\ \text{Figueria,G_{}^{15};\,\text{Fils,J_{}^{7};\,\text{Feugeas,J.L_{}^{8};\,\text{Galimberti,M_{}^{1};\,\text{Gauthier,J-C_{}^{8};\,\text{Giulietti,A_{}^{18}};\\ \text{Gizzi,L.A_{}^{18};\,\text{Goodin,D_{}^{2};\,\text{Gregori,G_{}^{1};\,\text{Gus}\,\text{kov,S_{}^{19};\,\text{Hallo,L_{}^{8};\,\text{Hernandez-Gomez,C_{}^{1}};\\ \text{Hoffman,D_{}^{7};\,\text{Honrubia,J_{}^{20};\,\text{Jacquemot,S_{}^{3};\,\text{Key,M_{}^{21};\,\text{Kilkenny,J_{}^{2};\,\text{Kingham,R_{}^{11}};\\\\ \text{Koenig,M_{}^{3};\,\text{Kovacs,F_{}^{12};\,\text{Krushelnic,K_{}^{11};\,\text{Labaune,C_{}^{16};\,\text{Lancaster,K_{}^{1};\,\text{Leblanc,C_{}^{3}};\\\\ \text{Mima,K_{}^{6};\,\text{Mourou,G_{}^{24};\,\text{Moustaizis,S_{}^{25};\,\text{Najmudin,Z_{}^{11};\,\text{Nickles,P_{}^{26};\,\text{Neely,D_{}^{1};\,\text{Norreys,P_{}^{1}};\\\\\\ \text{Olazabal,M_{}^{8};\,\text{Offenberger,A_{}^{17};\,\text{Papadogianis,N_{}^{27};\,\text{Perin,J-P_{}^{12};\,\text{Perlado,J.M_{}^{20};\,\text{Ramirez,J_{}^{20}};\\\\\\\\ \text{Ramis,R_{}^{20};\,\text{Ruee,Y_{}^{28};\,\text{Ribeyre,X_{}^{8};\,\text{Robinson,A_{}^{1};\,\text{Rohena,K_{}^{26};\,\text{Schavi,A_{}^{5};\,\text{Sergev,A_{}^{31}};\\\\\\\\ \text{Sherlock,M_{}^{1};\,\text{Silva,L_{}^{15};\,\text{Smith,R.A_{}^{11};\,\text{Sorasio,G_{}^{15};\,\text{Strangio,C_{}^{14};\,\text{Takabe,H_{}^{6};\,\text{Tatarakis,M_{}},\\\\\\} \end{array}}^{27};\,\text{Tikhonchuk,V,_{}^{8};\,\text{Tolley,M_{}^{1};\,\text{Vaselli,M_{}^{18};\,\text{Velarde,P_{}^{20};\,\text{Wistone,T_{}^{1};\,\text{Witte,K_{}},\\\\\\} \end{array}}^{3}}$

¹Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, UK

² General Atomics Inc., San Diego, CA, USA

³ Laboratoire pour l'Utilisation des Lasers Intenses - Ecole Polytechnique, Paris, France

⁴ Conseil Régional d'Aquitaine, France

⁵Dipartimento di Energetica, Università di Roma La Sapienza and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Italy

⁸ Institute of Laser Engineering, Osaka, Japan

Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

8 Centre Lasers Intenses et Applications, Université Bordeaux 1, France

⁹ Institute of Plasma Physics and Laser Microfusion, Euratom Association, Warsaw, Poland

10 Di Milano Bicocca and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Italy

¹¹ The Blackett Laboratory, Imperial College, London, UK

¹² Commissariat a l'Energie Atomique, France

13 Queen's University of Belfast, Northern Ireland

14 Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Italy

15 Instituto Superior Técnico, Lisbon, Portugal

¹⁶ Institute Lasers et Plasmas, Bordeaux, France

¹⁷ University of Alberta, Canada

18 Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Italy

¹⁹ Lebedev Physical Institute, Russian Academy of Sciences, Russia

²⁰ Universidad Politecnica de Madrid, Spain

²¹ Lawrence Livermore National Laboratory, USA

²² University of Strathclyde, Glasgow, UK

23 Max-Planck-Institut für Quantenoptik, Garching, Germany

²⁴ Laboratoire d'Optique Appliquée, ENSTA - Ecole Polytechnique, France

²⁵ Technical University of Crete, Greece

²⁶ Forschungsverbund Berlin e.V, Germany

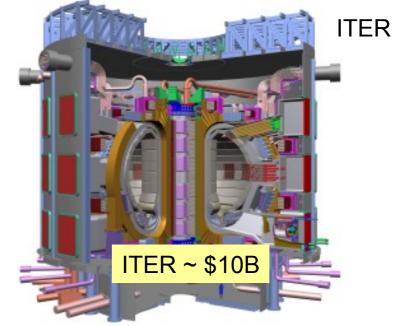
27 Technological Educational Institute of Crete, Greece

²⁸ Laboratory for Quantum Optics, Korea Atomic Energy Research Institute, South Korea

29 Academy of Sciences of Czech Republic, PALS, Czech Republic

³⁰ Technische Universität Darmstadt, Germany

³¹ Institute of Applied Physics, RAS, Russia


32 University of York, UK

33 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, China

HiPER Fusion: We are entering a new era

- Commitment to fusion via ITER, NIF, LMJ (multi-\$B investment)
- Demonstration of net energy production from laser fusion predicted within 3 to 5 years
- These are fundamental step-changes in our field
- Huge implications for our science and energy programmes
- A strategic way forward in Europe has been defined

HiPER A European project: HiPER

Project partners (at the ministerial / national funding agency level):

UK, France, Spain, Italy, Portugal, Czech Republic, Greece

Other partners (at the institutional level):

Germany, Poland, Russia

International links:

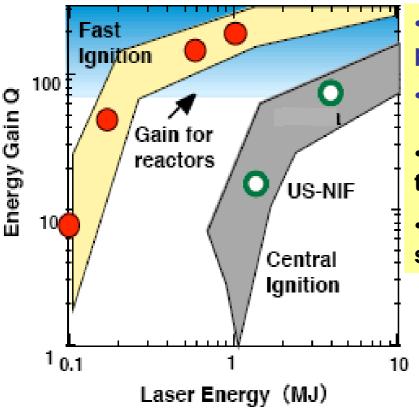
Japan, China, South Korea, USA, Canada

2-year conceptual design phase (2005,6) Included on European roadmap (Oct 06) UK endorsement – coordinators (Jan 07) Bid for next phase (May 07) Passed assessment (Jul 07) Project start (Apr 08)

Hiper

Net facility INEW will be large scale laser system displied to descentrate significant energy reactions there is a set of the set of the supporting a free data as of high power laser interactions clence. A set of the set of the set of the supporting a free data set of the power laser interactions clence. In reactions are set of the laser driven subsets haven as of existing laser schenology in a unique configuration (with a 20 do Linet poles laser. Interactions and the set.

Timeline and estimated costs Based on the cogning compitud drigs, work and egerimers with UL-FERL the construction cost of the fading's estimated ar --500 He, with a preparitory cost of --50 He, including completion of FERL2, and an annual operating cost of --80 He. The server scientificat addression the construction of the cost of the the construction of the cost of the



HiPER Community progress is needed

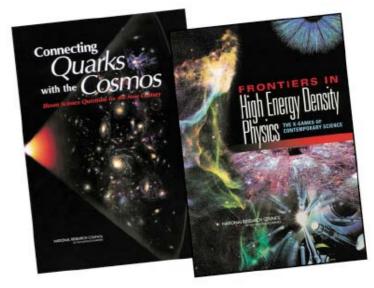
- 4 key goals need to be met:
 - -Ignition demonstration [NIF / LMJ]
 - -Evidence for advanced ignition path [EP, FIREX, ...]
 - Robust, costed facility design for the next step (HiPER)
 - -Political and financial commitment

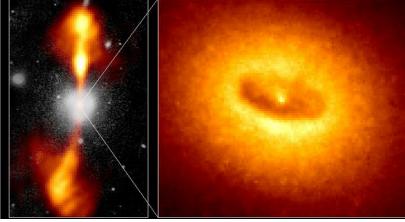
HiPER Fast Ignition approach to laser fusion

"Fast Ignition" approach of HiPER provides the bridge between laser fusion demonstration (NIF, 2010-2012) and an affordable route to power production

- Significantly smaller (cheaper) capital plant investment
- System model predicts cheaper electricity
- Allows European academia & industry to take a lead role
- Will have unique capabilities for a broad science programme

HiPER Flexibility for a broad science programme


- Material Properties under Extreme Conditions
 Unique sample conditions & diagnosis
 Non-equilibrium atomic physics tests
- Laboratory Astrophysics
 Viable non-Euler scaling & diagnosis
- Nuclear Physics
 Access to transient nuclear states
- Neutron Scattering


Potential for IFE based neutron scattering source

Turbulence

Onset and evolution in non-ideal fluids

- Radiation transfer and HED physics
 Unique sample conditions & diagnosis
- Development of new particle beam sources
- Fundamental strong field science

HiPER Options for the next step

Guiding theme to date has been a civilian facility, pulling together European and International expertise

2 options:

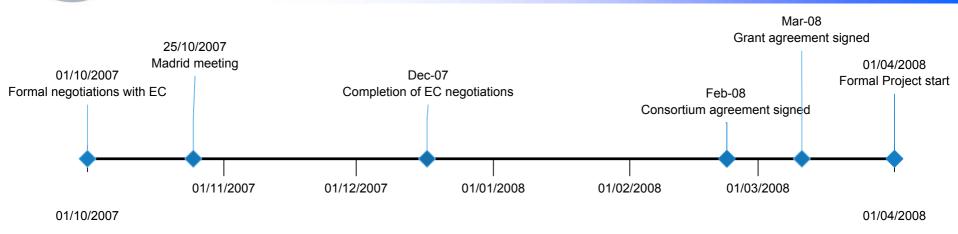
- High yield (fast ignitor) demonstrator based on optimised NIF/LMJ technology
- Full scale, high rep-rate fusion facility

Both options to be analysed to allow an informed decision

- Implosion energy:
 200 kJ in 5ns
 10 m chamber
- 2. PW beamlines:>70kJ in 10ps2ω

- 3. Paralle This is a conceptual design only
- of IFE bui • We need to establish an increased repetition rate design
- Target n
 We need to build capability to ensure effective use of HiPER
- Reactor
- → Intermediate demonstrators are important:
 - Target physics and technology (PETAL)
 - The route to high repetition rate (beamline)

HiPER Preparatory phase project


3 main deliverables:

- 1. Design of the HiPER facility (for the 2 principal options)
- 2. Establish sufficient level of capability
 - Point designs from self-consistent simulations
 - Integrated experimental validation programme
 - Technology readiness
 - Coordination with international partners
 - Confidence in the Fast Ignition route
- 3. Legal, financial and governance framework

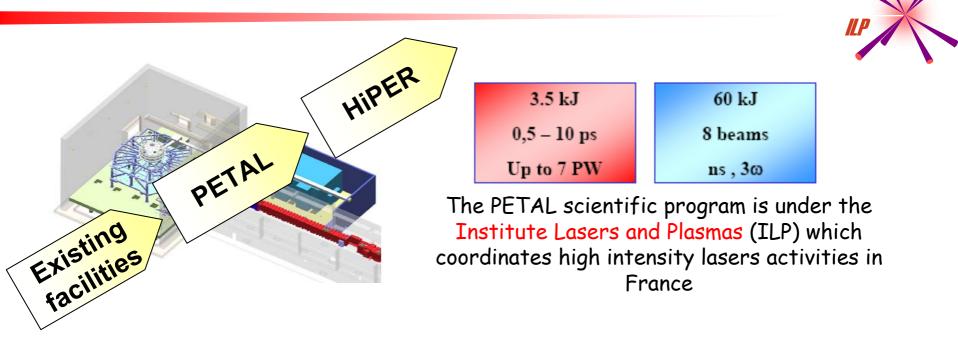
- We have completed 2-years of planning for the next phase [300 page document available on request!]
- Integrated plan developed: 15 M€ required over first 3 years
 - Underlying R&D
 - Project specific technical planning
 - Financial, legal, governance development
- Funding is from EC and member states
- Current expectation: this funding is likely
- Detailed allocation of money & responsibilities
 - Madrid, 25-26 Oct 2007
 - Contract signatures in early 2008

HiPER Project Timeline

HiPER Required technical developments

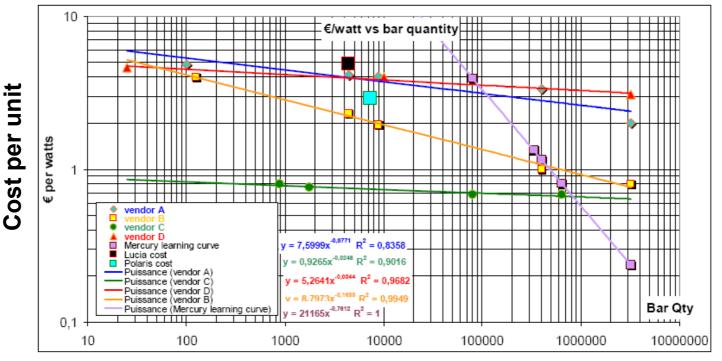
- Laser design
 - 2ω CPA solution, OPCPA (for high power beam)
 - Flexibility for a range of ignition options
 - High repetition rate, high efficiency drivers
- Improved understanding of the target performance
 - Needs coordinated research programs on international laser facilities
 - Point design assessment, and key physics issues
- Micro-fabrication & delivery of fuel pellets (and future bulk manufacture methods)
- Integrated reactor designs

International cooperation in these areas is essential


HiPER Staged approach towards HiPER agreed

A single approach to IFE within Europe has been defined Common strategic theme, with phased facility development:

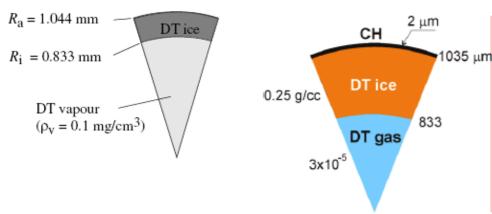
- PETAL: Integration of PW and high energy beamlines
- HiPER: High yield facility


Coordinated scientific and technology development between the major European laser laboratories (e.g. Vulcan, LULI, PALS, ...)

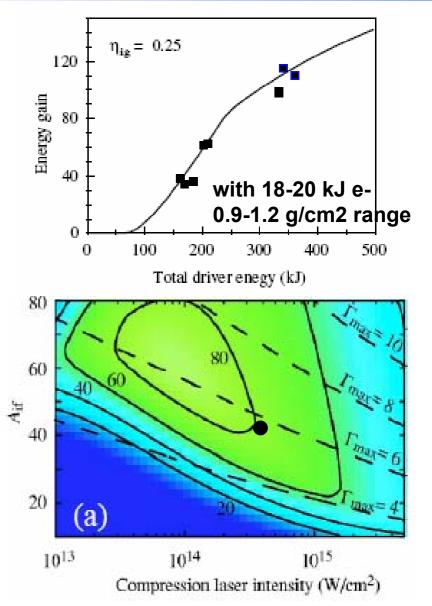
HiPER Laser technology demonstrator

Progress is needed prior to the decision to "skip a generation"

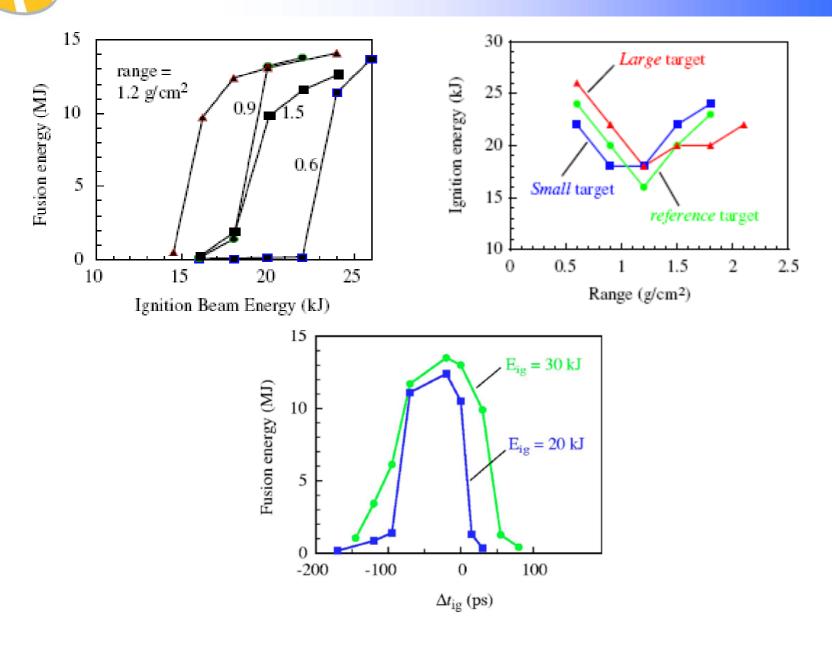
- few-kJ, few-Hz demonstrator beamline assessed (Chanteloup et al)
- Workshops with research groups + industry held
- ~80 M€ beamline estimate (based on recent soft quotes at today's prices)
 - \rightarrow Market survey and international coordination planned

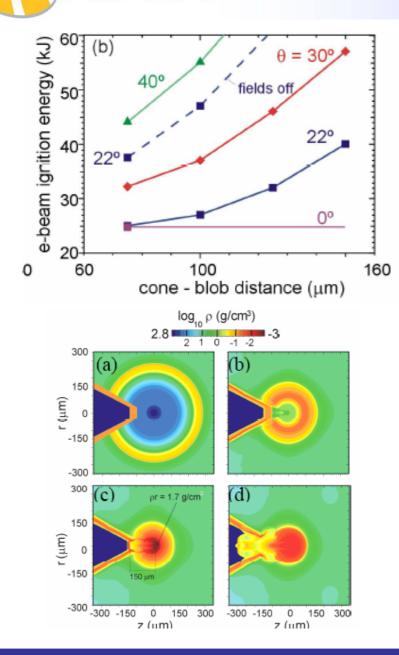

Production scale

HiPER Required technical developments


- Laser design
 - **2ω CPA solution, OPCPA (for high power beam)**
 - Flexibility for a range of ignition options
 - High repetition rate, high efficiency drivers
- Improved understanding of the target performance
 - Needs coordinated research programs on international laser facilities
 - Point design assessment, and key physics issues
- Micro-fabrication & delivery of fuel pellets (and future bulk manufacture methods)
- Integrated reactor designs

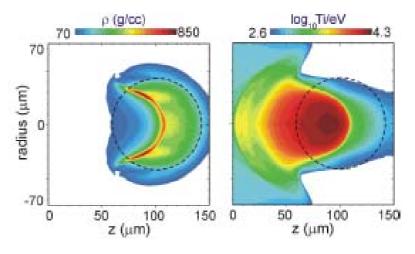
International cooperation in these areas is essential


HiPER Recent sensitivity modelling (Atzeni, Honrubia et al)


	small	reference	large
outer radius (mm)	0.912	1.044	1.316
inner radius (mm)	0.728	0.833	1.050
total mass (mg)	0.39	0.587	1.17
$E_{\rm c}^{\rm laser}$ (kJ)	89	132	263
$\max \langle \rho R \rangle$ (g/cm ²)	1.33	1.58	1.99
max fusion yield (MJ)	6.5	13	38
$\max \langle \rho R \rangle$ (g/cm ²)	1.06	1.28	1.62
(3T model)			

HiPER Sensitivity (Honrubia & Atzeni studies) ...

HiPER Sensitivity (Honrubia & Atzeni studies) ...



Indicates:

- 200 kJ implosion laser
- 70 100 kJ ignition laser

Assuming

- cone to blob ~ 100 μm
- divergence ~ 30° half-angle
- fλ ~ 0.4 μm
- we can believe these codes

HiPER Experimental validation programme needed

- Absorption and energy transfer to the fast electron beam
- Divergence and collimation novel techniques
- Phase control
- Coordinated experimental programme being planned to address these issues
- Note: significant target requirements
 over the next 3-5 years!
- Proton / ion driven FI scaling experiments
- Two stream instability ion heating
- Hole boring
- Alternative geometries (get rid of the cone!!!)

HiPER Required technical developments

- Laser design
 - 2ω CPA solution, OPCPA (for high power beam)
 - Flexibility for a range of ignition options
 - High repetition rate, high efficiency drivers
- Improved understanding of the target performance
 - Needs coordinated research programs on international laser facilities
 - Point design assessment, and key physics issues
- Micro-fabrication & delivery of fuel pellets (and future bulk manufacture methods)
- Integrated reactor designs

International cooperation in these areas is essential

HiPER Target Fabrication – planned work (1 / 2)

Self-consistent target design

Iterate design to produce a practical, robust target:

- manufacture & fielding constraints
- plasma modelling specifications
- overall facility design constraints

Technical analysis of key target production issues:

- Cone/capsule seal at cryo temperatures
- Thermal and structural analysis of target assembly
- Layering for wicked foam and high density shell targets with cone
- Baseline cryo insertion for direct drive fast ignition target
- Experimental validation plan for the proposed design

To produce : Conceptual Design for FI target assembly and fielding

- : Assessment of European capability in this area
- : Future plans for required target production

HiPER Target Fabrication – planned work (2 / 2)

Target production for experimental validation

• For experiments on PETAL (and other international facilities)

Investigate mass production techniques and capability

- Determine credible, large scale target production route
 - for target manufacture, assembly, and preferred filling method
 - propose experimental validation plans where required
- Cost study for high repetition production
- Assess high rep-rate injection and tracking techniques
- Assess cryogenic infrastructure requirements & costs
- Analyse Tritium handling procedures

- Fusion ignition is fast approaching
- A concept for a next-generation UK/European facility has been proposed
- The transition from concept to technical and political reality is now underway
- Target technology is one of the key issues to be addressed over the next 3 years
- We must work together in an internationally coordinated programme

HiPER Funding – details (DRAFT)

		Cost (kE)
WP1	Management of the Preparatory Phase Project	1,737
WP2	Coordination activities	681
WP3	Legal and Governance Frameworks	251
WP4	Strategy for International, Industrial and Academic Partnerships	501
WP5	Finance, cost engineering and through life analysis	803
WP6	Safety and Environmental analysis	322 /
WP7	Cost-benefit and impact analysis	231
WP8	Public Relations and Communications	653
WP9	Requirements specification for fusion programme	2,172
WP10	R&D validation of fusion design	/ 1,568 \
WP11	Targetry assessment, prototyping and long-term R&D	/ 3,224 \
WP12	Requirements specification for science programme	1,858
WP13	Baseline facility costing and design	1,003
WP14	R&D for high repetition rate laser	1,977 /
WP15	R&D for high repetition rate experimental area	2,197
		19,178

HiPER Draft management structure

HiPER Choosing the best option

- NIF/LMJ laser architecture is a straightforward option, but both the science and energy programmes would benefit from higher repetition rate
 - Facility optimisation (the laser is not the limiting factor)
 - Long term: ~Hertz repetition rate demonstrator for reactor programme
 - What is the appropriate stage for HiPER?
- Repetition rate technically desirable, but it adds:
 - Cost
 - Complexity
 - Delay
- However, the HiPER project is not about securing a new facility for a particular lab, it is about driving forwards our field
- Which approach is acceptable to our funding agencies?
 - We shall see ...

HiPER Progress towards a coordinated programme

- Re-direction of existing people & programmes for the successful realisation of HiPER
- **Identification** of new resources to this project at the EU, national and regional government level
- **Coordination** of user access to the three highest energy European laser laboratories (CLF, LULI, PALS)
- **Merger** with PETAL on a common strategic path
- Alignment of the major high power laser groups within Europe
- Cooperation with International partners being pursued:
 - Concepts, experiments, training, component supply, ...

HiPER will address some of the most fundamental questions in science

- How does matter behave under conditions of extreme temperature, pressure, density and electromagnetic fields ?
- What are the new states of matter at enormous temperature and pressure ?
- What is the nature of matter in the early universe ?
- How do photons and matter interact in extreme conditions ?
- How do planetary cores form and evolve ?
- How are the elements from Iron to Uranium made ?
- Can we create nuclear flames in the laboratory ?
- Is it possible to produce meaningful scaled astrophysical events (eg Jets, Supernova Remnants) in the laboratory ?
- Can turbulence be understood ?
- Are current models of star and planet structure and dynamics correct ?
- Can fully degenerate "quantum plasmas" be created in the laboratory ?
- Can lasers boil the vacuum ?
- Is it possible to recreate the atmosphere of a neutron star ?
- When does the vacuum become opaque ?
- When do solids become transparent ?
- Can lasers be accelerators ?
- Can we change the refractive index of the vacuum
- Does metallic Hydrogen exist in the solid state ?
- Can pure electron-positron plasma be produced ?
- Can the Radiative Hydrodynamics of many astrophysical events (Colliding galaxies, supernovae..) be reproduced ?
- Can Unruh Radiation (E-M equivalent to Hawking Radiation) be detected ?
- Can relativistic physics on the attosecond timescale be achieved ?

Prof Mike Dunne