SOFT X-RAY IMAGING OF LOW DENSITY TARGET MATERIALS IN THE "CARBON WINDOW" SPECTRAL REGION

Igor A. Artyukov

X-ray Optics Laboratory Lebedev Physical Institute, Moscow, Russia

iart@sci.lebedev.ru

Co-authors

- N.G.Borisenko, A.M.Khalenkov, R.M.Feshchenko, A.V.Vinogradov Lebedev Physical Institute RAS, Moscow, Russia
- Yu.S.Kasyanov *Prokhorov General Physics Institute RAS, Moscow, Russia*
- Ye.A.Bugaev, O.Yu.Devizenko, V.V.Kondratenko National Technical University "Kharkiv Polytechnic Institute", Kharkov, Ukraine
- V.G.Pimenov Institute of Organic Chemistry RAS, Moscow, Russia

Outline

- 1. Soft X-ray/EUV multilayer optics
- 2. Transmission and reflected mode microscopy at the soft X-ray/EUV rays
- 3. "Carbon window" in soft X-ray imaging
- 4. 3D soft X-ray imaging of thick low-density materials
- 5. Conclusions

Soft X-rays/EUV as working spectral range

Calculated peak reflectivity of X-ray multilayers mirrors

Interface roughness/diffusion affects the Co/C mirror performance

Measured reflectivity of MLM

Number of periods for the measured multilayer mirrors

MWTA'07, Moscow, October 15, 2007

Reflective EUV microscopy with a capillary discharge EUV laser (Colorado State University) microscope capil

capillary-discharge laser

Ne-like Ar capillary-discharge laser parameters:

Courtesy of C.Menoni

F. Brizuela, et al., Optics Express, 13, 3983, (2005).

"Carbon window" soft X-ray region

I.A. Artyukov et al., *Proc. SPIE*, Vol. 5919, pp. 94-103, 2005. *MWTA'07, Moscow, October 15, 2007*

"Carbon window" soft X-rays:

- Decreased absorption dose to samples due to better transmission of organic materials. Water is still not opaque.
- Differential contrast of various organic materials
- Ability to study a "thick" (>> 10 μm) sample of carboncontaining materials with sub-micron resolution. 3D imaging
- How power X-ray tubes can be used as an X-ray source

CoC/C multilayer coating for 4.5 nm

- DC-magnetron sputtering
- Number of periods N = 200
- Period *d*=2.25-2.29 nm
- Interface roughness $\sigma = 0.3-0.32$ nm (RMS)

Igor A. Artyukov et al., *Proc. SPIE*, Vol. 5919, pp. 94-103, 2005.

Measured reflectivity of Co/C mirrors at the wavelength $\lambda \approx 4.5$ nm

MWTA'07, Moscow, October 15, 2007

Measured reflectivity of Co/C multilayer mirrors at the wavelength $\lambda \approx 4.5$ nm

#	Period number	$\Delta\lambda\lambda\lambda, \%$	λ_{peak} , nm	<i>R</i> , %
1	80	1.1	4.61	8.1
2	100	0.95	4.52	9.7
3	150	0.66	4.53	13.0
4	200	0.57	4.47	14.3

Near normal-incidence measurements at BESSY II

(incidence angle $\alpha = 5^{\circ}$)

Scandium coated polymer X-ray filters

I.A.Artioukov et al., *Rev. Sci. Instr.*, Vol.74, No.11, pp.4964–4966, 2003. *MWTA'07, Moscow, October 15, 2007*

Calculated and measured transmission of Sc/C X-ray filters (T_c and T_{exp})

Polymer	Polymer	Scandium	Transmission, %			
base	thickness,	thickness,	λ=4.47 nm		λ=632.9 nm	
μm	μm	μm	T _c	T _{exp}	T _c	T _{exp}
Polypropylene	1.5	0.1	62	60.1±0.4	7.1.10-4	$(1.0\pm0.3)\cdot10^{-3}$
Polyimide	0.15	0.1	74	60.7±0.7	7.2.10-4	$(5.5 \pm 0.5) \cdot 10^{-4}$
	0.3	0.1	70	57.0 ±0.7	7.2.10-4	$(1.7\pm0.3)\cdot10^{-4}$
	0.3	0.2	55		5.10-7	

All the filters had 4 nm-thick carbon layer (2 sides x 2 nm)

LPP-based soft X-ray microradiography at $\lambda = 4.5$ nm

Triple "1" principle

1 Joule of laser pulse energy
1 nanosecond exposure
1 shot per image

Soft X-ray images of the l.d. materials at $\lambda = 4.5$ nm ($\rho = 1.7-10$ mg/cm³)

A – TAC film, thickness $t = 200 \text{ }\mu\text{m}$, no Cu, $\rho = 4.5 \text{ mg/cm}^3$

B – TAC film + 20 % *Cu*, $t = 200 \text{ }\mu\text{m}, \rho = 10 \text{ }m\text{g/cm}^3$

C – TAC film + 10 % *Cu*, $t = 300 \text{ }\mu\text{m}, \rho = 10 \text{ }\text{mg/cm}^3$

SEM images of low density target materials

triacetate of cellulose (TAC) $\rho \sim 10 \text{ mg/cm}^3$

Физичес Stereo-imaging of thick organic samples

- Thickness t = 0.2...1 mm
- Spatial resolution $\delta = 1...5 \,\mu m$
- $N = t/\delta = 100...400$
- 3D visualization of density (inhomogenities) distribution

Sc/C filter Sample Detector

Stereo SX imaging of low density foam of the thickness 300-800 micron

Towards better resolution: Schwarzschild objective

High resolution X-ray imaging using SO at λ =18-20 nm (1994)

M

MWTA'07, Moscow, October 15, 2007

I.A.Artioukov et al., Opt. Lett., 20 (24), 2451 (1995)

Fabrication of the SO mirrors

Multilayer coating gradient accuracy is measured to be better than 0.25 % (< 0.06 nm)

I.A.Artyukov et al., Proc.SPIE, San Diego, August 2007.

Conclusions

- 1. Soft X-ray multilayer mirrors are capable providing 10-15 % of the normal incidence reflectivity at the wavelength ~ 4.5 nm with the spectral resolution $\lambda/\Delta\lambda \sim 200$.
- 2. "Carbon window" (CW) X-ray absorption microscopy proves to be an effective tool for high contrast imaging of thick carbon-containing samples (thickness up to 1 mm).
- 3. Combination of large depth of view, high spatial resolution and low absorption has demonstrated to be a basis for the 3D imaging of low density target materials.
- 4. The improvement of the spatial resolution can be achieved with the help of multi-mirror optical systems. The correspondent work on the soft X-ray Schwarzschild microscope working in CW region is undergoing.

lgor A. Artyukov